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Definition 1 An Infinite Series is an expression of the form
∞
∑

n=1

an = a1 + a2 + ... + an + ...

Where a1, a2, a3, ..., an, ... are called the terms of the series. If we let Sn be
the sum of the first n terms of the series then we have the following:
S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3

.

.

.

Sn = a1 + a2 + a3 + ... + an =
n

∑

n=1

an

We’ll call Sn the nth partial sum of the series.
The partial sums form {Sn}+∞

n=1 - the sequence of partial sums.

Definition 2 Let {Sn} be a sequence of partial sums of
∞
∑

n=1

an.

If {Sn} converges to a limit S, then the series also converges and S is called
the sum of the series.

S =
∞
∑

n=1

an

If {Sn} diverges then the series is said to diverge.
A divergent series has no sum.

Example 1 Determine if the series 1− 1 + 1− 1 + 1− 1 + ... converges or
diverges.
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Now, S1 = 1, S2 = 1 − 1 = 0, S3 = 1, S4 = 0, e.t.c
1, 0, 1, 0, 1, 0, ... is the sequence of partial sums.
This sequence is divergent ⇒ the given series is divergent.

We’ll now look at a class of series called a geometric series.

Definition 3 A geometric series is a series of the form a+ar+ar2 +ar3 +
... + arn + ....Where a 6= 0 and r is a real number called the ratio of the
series.

Theorem 1 A geometric series converges if |r| < 1 and diverges if |r| ≥ 1.
When the series converges the sum is a

1−r

Example 2 5 + 5
4

+ 5
42 + 5

43 + 5
44 + ... + 5

4k−1 + ...
is a geometric series with a = 5,and r = 1

4
. ⇒ the series converges with sum

= 5
1− 1

4

= 20
3

Example 3 Determine if
∞
∑

k=1

1

5k
converges or diverges. If it converges find

the sum.
Well I’ll leave this one for you. Just identify it as a geometric series and do
what’s needed.

Example 4 Determine if the series
∞
∑

k=1

1

k(k + 1)
converges or diverges. If

it converges find its sum.

Here, Sn =
n

∑

k=1

1

k(k + 1)
=

1

1 · 2 +
1

2 · 3 +
1

3 · 4 + ... +
1

n(n + 1)
Using partial fractions we see that

1
k(k+1)

= 1
k
− 1

k+1

This implies that Sn =
n

∑

k=1

(

1

k
− 1

k + 1

)

= 1− 1

2
+

1

2
− 1

3
+ ... +

1

n
− 1

n + 1

= 1 − 1

n + 1

So Sn = 1 − 1
n+1

and lim
n→∞

Sn = lim
n→∞

(

1 − 1

n + 1

)

= 1

⇒
∞
∑

k=1

1

k(k + 1)
= 1
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Which means that the series converges with sum 1.
The series in Example 4 is an example of what we call a Telescoping series.

Example 5 Determine if
∞
∑

k=1

1

(k + 2)(k + 3)
converges or diverges. If it

converges find the sum.
This is another one that I would like you to try for me.

We now come to an important theorem that allows us to quickly decide if a
series diverges or not.

Theorem 2 (Divergence Test) If lim
k→∞

ak 6= 0 then
∞
∑

k=1

ak diverges.

Example 6
∞
∑

k=1

k

k + 1
diverges since

lim
k→∞

k

k + 1
= lim

k→∞

1

1 + 1
k

= 1 6= 0

Theorem 3 (Properties of Infinite Series)

1.
∞
∑

n=1

can = c
∞
∑

n=1

an

2.
∞
∑

n=1

(an ± bn) =
∞
∑

n=1

an ±
∞
∑

n=1

bn

3. Convergence and Divergence are unaffected by deleting a finite number
of terms from the beginning of a series.

From (1) we see that if a series is convergent then a scalar times that series
is also convergent. Similarly, if a series diverges then a scalar times that
series also diverges.
From (2) it is obvious that the sum or difference of 2 convergent series also
converges.
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Example 7 Find the sum of the series
∞
∑

k=1

(

3

4k
− 2

5k−1

)

.

From the above theorem
∞
∑

k=1

(

3

4k
− 2

5k−1

)

=
∞
∑

k=1

3

4k
−

∞
∑

k=1

2

5k−1

=
3
4

1 − 1
4

− 2

1 − 1
5

= 1 − 5

2
= −3

2

Example 8 Find the sum of
∞
∑

k=1

2

5k

From (1) in Theorem 3, we have
∞
∑

k=1

2

5k
= 2

∞
∑

k=1

1

5k

Well
∞
∑

k=1

1

5k
is a series you already dealt with in Example 3, so you know

what to do.

Example 9 Determine if
∞
∑

k=10

k

k + 1
converges or diverges.

From Example 6
∞
∑

k=1

k

k + 1
diverges, therefore

∞
∑

k=10

k

k + 1
also diverges since

it is
∞
∑

k=1

k

k + 1
with the first nine terms taken out and according to (3) from

Theorem 3 such a series must also diverge.

Theorem 4 (Integral Test) Let
∞
∑

n=1

an be a series with positive terms ,

and let f(x) be the function such that f(n) = an. If f is decreasing and
continuous for x ≥ 1 , then
∞
∑

n=1

an and
∫ ∞

1
f(x) dx both converge or both diverge.

Example 10 Determine if
∞
∑

n=1

1

n2
converges or diverges.

f(x) =
1

x2
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∫ ∞

1

dx

x2
= lim

M→∞

∫ M

1

dx

x2

= lim
M→∞

[

−1

x

]M

1

= lim
M→∞

(

1 − 1

M

)

= 1

We have just shown that the improper integral converges,therefore the series
converges.

Example 11 Show that
∞
∑

n=1

1

n
diverges using the integral test.

I’ll leave this one to you. You just need to set up an improper integral like
the one I set up in Example 1. Then show that the integral diverges.

Example 12 Determine if the series
∞
∑

n=1

n

en2 converges or diverges.

Here we’ll let f(x) = x

ex2 = xe−x2
then

f ′(x) = e−x2

(1 − 2x2) ≤ 0

This implies that f is decreasing for x ≥ 1 and since all the terms of the
series are positive we can go ahead and use the integral test.

∫ ∞

1
xe−x2

dx = lim
M→∞

∫ M

1
xe−x2

dx

= lim
M→∞

[

−1

2
e−x2

]M

1

= lim
M→∞

[

1

2e
− 1

2
e−M2

]

=
1

2e

This implies that the improper integral converges and therefore the series
converges.

The Integral Test leads us to the following theorem.
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Theorem 5
∞
∑

k=1

1

kp
= 1 +

1

2p
+

1

3p
+ ..., where p > 0 converges if p > 1 and

diverges if 0 < p ≤ 1.

The above series is called a p - series.

When p = 1 we get the series
∞
∑

k=1

1

k
which is called the harmonic series and

which is of course divergent.

Example 13 Determine if the series
∞
∑

k=1

1
3
√

k
converges.

Now 1
3√

k
= 1

k
1
3

This means that the series is a p-series with p = 1
3
. From

the last theorem we know that a p - series converges if p > 1 and diverges if
0 < p ≤ 1. Therefore the given series diverges.

Theorem 6 (Ratio Test) Let
∞
∑

k=1

an be a series with non-zero terms.And

let ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

1. The series converges if ρ < 1

2. The series diverges if ρ > 1

3. The test is inconclusive if ρ = 1

Example 14 Determine if
∞
∑

n=1

2n

n!
converges or diverges.

an+1 = 2n+1

(n+1)!
, an = 2n

n!
∣

∣

∣

an+1

an

∣

∣

∣ =
∣

∣

∣

2n+1

(n+1)!
· n!

2n

∣

∣

∣ = 2
n+1

ρ = lim
n→∞

2

n + 1
= 0

Therefore the series converges by the ratio test.

Theorem 7 (Alternating Series Test) An alternating series
a1 − a2 + a3 − a4 + ... + (−1)k+1ak + ...
or −a1 + a2 − a3 + ... + (−1)kak + ..., all ak > 0
converges if the following conditions are met:
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1. a1 ≥ a2 ≥ a3 ≥ ... ≥ ak ≥ ...

2. lim
k→∞

ak = 0

Definition 4 (Power Series) An infinite series of the form
∞
∑

n=0

anx
n = a0 + a1x + a2x

2 + ... + anx
n + ...

is called a power series in x.

An infinite series of the form
∞
∑

n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 +

... + an(x − c)n + ...
is called a power series centered at c.

Theorem 8 (Convergence of a Power Series) For a power series cen-
tered at c only one of the following is true.

1. The series converges only at x = c.

2. The series converges for all x.

3. There exists a positive real number R such that the series converges
for |x − c| < R and diverges for |x − c| > R

In the third case the series converges in the interval (c − R,C + R) and
diverges in intervals (−∞, c − R) and (c + R,∞). We would still need to
check the endpoints c − R and c + R for convergence. The interval in which
the series converges is called the interval of convergence.

Definition 5 (Radius of Convergence) The radius of convergence of a
power series centered at c is

R = lim
n→∞

∣

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

∣

, 0 ≤ R ≤ ∞.

Example 15 Find the radius of convergence of
∞
∑

n=0

xn

n!
.

R = lim
n→∞

∣

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

∣

1/n!

1/(n + 1)!

∣

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

∣

(n + 1)!

n!

∣

∣

∣

∣

∣
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= lim
n→∞

(n + 1) = ∞

A radius of convergence of infinity means that the power series converges for
all real values of x.

Example 16 Find the radius of convergence of
∞
∑

n=0

(−1)n(x + 1)n

2n
.

R = lim
n→∞

∣

∣

∣

∣

∣

an

an+1

∣

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

∣

(−1)n/2n

(−1)n+1/2n+1

∣

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

∣

2n+1

2n

∣

∣

∣

∣

∣

= lim
n→∞

2 = 2

Since the center of the series is c = −1, we conclude that the series converges
in the interval (−1−2,−1+2) = (−3, 1). In fact if we check for convergence
at the endpoints we find that the series diverges at the endpoints and (−3, 1)
is in fact the interval of convergence.

We now look at an important type of power series called the Taylor series.
Here we’ll show how to use derivatives of a function to write the power series
for that function.

Definition 6 (Taylor Series) If f(x) has derivatives of all orders at c,
then the power series for f(x) centered at c is called the Taylor series for
f(x) centered at c and is given by
∞
∑

n=0

f (n)(c)

n!
(x−c)n = f(c)+f ′(c)(x−c)+

f ′′(c)

2!
(x−c)2+...+

f (n)(c)

n!
(x−c)n +...

If c = 0 then the Taylor series is called a Maclaurin series.

Example 17 Find the Maclaurin series for f(x) = ex.
Now f(0) = e0 = 1 and since f ′(x) = ex and all higher derivatives of f also
equal ex. This implies that f (n)(0) = 1 for all n.
Now by the definition of the Maclaurin series,

ex = f(0) + f ′(0)x + f ′′(0)x2

2!
+ f ′′′(0)x3

3!
+ ...

= 1 + x + x2

2!
+ x3

3!
+ ...

=
∞
∑

n=0

xn

n!
.

Example 18 Find the Taylor series for f(x) = 1/x, centered at 1.
f(x) = x−1 ⇒ f(1) = 1
f ′(x) = −x−2 ⇒ f ′(1) = −1
f ′′(x) = 2x−3 ⇒ f ′′(1) = 2
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f ′′′(x) = −6x−4 ⇒ f ′′′(1) = −6
f (4)(x) = 24x−5 ⇒ f (4)(1) = 24

⇒ f(x) = 1
x

= f(1)+f ′(1)(x−1)+ f ′′(1)(x−1)2

2!
+ f ′′′(1)(x−1)3

3!
+ f (4)(1)(x−1)4

4!
+ ...

= 1 − (x − 1) + 2(x−1)2

2!
− 6(x−1)3

3!
+ 24(x−1)4

4!
− ...

= 1 − (x − 1) + (x − 1)2 − (x − 1)3 + (x − 1)4 − ...

=
∞
∑

n=0

(−1)n(x − 1)n.

Which is the Taylor series we wanted.
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