Test 11 solutions

EMT 121
July 23, 2009

Check back later in the week for the solutions to the series problems.
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Well 1 feel we did a good job solving this one in class.

4. Determine whether the following integrals converge or diverge.If the inte-
gral converges, evaluate it.
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We’ll take the class solutions for (b) and (c).

5. Given the function f at the following values:

x 1.8 2.0 2.2 2.4 2.6
f(z) || 3.12014 | 4.42569 | 6.04241 | 8.03014 | 10.46675
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Approximate (z) dz using
1.8

(a) the Trapezoidal rule
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10.46675] = 5.058337

(b) Simpson’s rule
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10.46675] = 5.033002

[3.12014+2(4.42569+6.04241+-8.03014)+

[3.12014+4(4.42569+8.03014)4-2(6.04241)+
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6. Use the Trapezium Rule with n = 4 to approximate / rlnzdr
1

First set up a table of values as follows:

T 1] 1.25 1.5 1.75 2.0
f(z) || 0] 0.2789 | 0.6082 | 0.9793 | 1.3863

This implies that,
2
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/ xlnzdr ~ é[O + 2(0.2789 + 0.6082 4 0.9793) + 1.3863] = 0.6398875
1

7. For each of the following series , determine whether it converges or di-
verges.
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This series diverges since it is a known divergent series with the first

three terms taken out. We could also use the Integral or Ratio test
to show that this series diverges.
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Here I would use the ratio test, lim Intl) _ fim s
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This means that the series converges.
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For this one since nh—>ngo m = 1 = The series diverges by
the divergence test.
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but — is a p-series with p = 1. Therefore diverges.
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which is a known divergent series with the first six terms taken out.
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9. Determine the radius of convergence of the following Power Series.
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