Notes on Boolean Algebra

Laurel Benn

May 12, 2012

1 Simplifying Boolean Expressions

In order to simplify Boolean Expressions we need to make use of Boolean Algebra's Basic Laws, Distributive Laws, the Absorption Laws and DeMorgan's Laws.

Basic Laws

0 + 0 = 0	0 + 1 = 1	1 + 1 = 1	1 + 0 = 1
$0 \cdot 0 = 0$	$0 \cdot 1 = 0$	$1 \cdot 1 = 1$	$1 \cdot 0 = 0$
A + 0 = A	A + 1 = 1	A + A = A	$A + \bar{A} = 1$
$A \cdot 0 = 0$	$A \cdot 1 = A$	AA = A	$A\bar{A} = 0$

Distributive Laws A(B+C) = AB + AC, (A+B)C = AC + BC

Absorption Laws A + AB = A $A + \overline{AB} = A + B$

DeMorgan's Laws $\overline{AB} = \overline{A} + \overline{B}$ $\overline{A + B} = \overline{A}\overline{B}$

Example: Simplify the Boolean expression C + CD

C+CD=C(1+D)=C(1)=C . Also straight from the first Absorption Law we should see that $\ C+CD=C$

Example: Simplify the Boolean expression A(B + AB) + AC

$$A(B+AB) + AC = AB + AC = A(B+C)$$

Example: Simplify the Boolean expression $A\bar{B}C + A\bar{B}\bar{C}$

$$A\bar{B}C + A\bar{B}\bar{C} = A\bar{B}(C + \bar{C}) = A\bar{B}(1) = A\bar{B}$$

Example: Simplify the Boolean expression $AB + B(B + \overline{C}) + \overline{B}C$

$$AB + B(B + \overline{C}) + \overline{B}C = AB + BB + B\overline{C} + \overline{B}C$$
$$= AB + \underbrace{B + B\overline{C}}_{B} + \overline{B}C = \underbrace{AB + B}_{B} + \overline{B}C = B + C$$

Example: Simplify the Boolean expression $\bar{C}F + F(A + \bar{B}) + C$ $\bar{C}F + F(A + \bar{B}) + C = C + \bar{C}F + F(A + \bar{B}) = C + \underbrace{F + F(A + \bar{B})}_{F} = C + F$

2 Boolean Expressions from Truth Tables

For this we will make use of either of 2 methods:

- 1. Sum-of-Products(SOP)
- 2. Product-of-Sums(POS)

Sum-of-Products(SOP)

To write a Boolean Expression using SOP we only need to do the following:

- 1. Find all rows of the truth table that gives 1 as output.
- 2. Write the inputs of each row found in step 1 as a product.
- 3. Take the products obtained in step 2 and form a sum.

Example: Given the following truth table write a corresponding Boolean Expression.

Input	Input	Input	Output
A	B	C	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Here row 3 and row 4 has 1 as output. For row 3 we have A = 0, B = 1 and C = 0 which corresponds to the product $\overline{A}B\overline{C}$. Row 4 has A = 0, B = 1 and C = 1 which corresponds to the product $\overline{A}BC$.

Therefore $\overline{ABC} + \overline{ABC}$ is a Boolean Expression obtained from the truth table. Looking at the expression we see that it can be simplified to give \overline{AB} . How?

Product-of-Sums (POS)

To write a Boolean Expression using POS we only need to do the following:

- 1. Find all rows of the truth table that gives 0 as output.
- 2. Write the inputs of each row found in step 1 as a sum. (for A = 0 we write A and for A = 1 we write \overline{A})
- 3. Take the sums obtained in step 2 and form a product.

Example: Given the following truth table write a corresponding Boolean Expression using POS.

Input	Input	Input	Output
A	B	C	X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- 1. Rows 5 and 7 have 0 as output.
- 2. Corresponding sums are $\bar{A} + B + C$ and $\bar{A} + \bar{B} + C$
- 3. Expression obtained by POS is $(\bar{A} + B + C)(\bar{A} + \bar{B} + C)$

We will now simplify the above expression. $(\bar{A}+B+C)(\bar{A}+\bar{B}+C) = \bar{A}\bar{A}+\bar{A}\bar{B}+\bar{A}C+\bar{A}B+B\bar{B}+BC+\bar{A}C+\bar{B}C+CC$

$$= \bar{A} + \bar{A}\bar{B} + \bar{A}C + \bar{A}B + BC + \bar{B}C + C$$

$$= \underbrace{A + AC}_{A+C} + AB + \underbrace{BC + C}_{C}$$
$$= A + C + \overline{AB} = \underbrace{A + \overline{AB}}_{A+B} + C = A + B + C$$

3 Logic Circuits from Boolean Expressions

Example: Draw a logic circuit for the Boolean Expression \overline{AB} . We see that we are dealing with 2 gates here. A NOT gate for A and an AND gate for \overline{AB} .

Example: Draw the logic circuit for AB + C.

Example: Draw a logic circuit for $X = (\overline{(A+B)+C})(AB+C)$

Suppose we had simplified the Boolean Expression first, what would our circuit look like?