EMT 121

Practice Final Exam
Friday June 4, 2010
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(a) the radius of convergence.
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(b) the interval of convergence.
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2. Express e” as a Maclaurin series.
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3. Determine whether ; 2_3 converges or diverges.
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Using the limit comparison test (comparing with Z ﬁ)we get,
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that since kz_o 72 converges then ; Z_3 also converges.
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4. Determine if / — dx is convergent or divergent.
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5. Find the sum ofi#
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6. Evaluate / de
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- /ln(m +5)d(In(z + 5)) = w i C
7. Evaluate/ rsinz dx
0
= [-zcosz +sinz|y = —wcosm+sinTt= —7-(-1)+0=7



8. Evaluate / tan® z sec® z dz
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Evaluate / dix
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10. Estimate the value of / e®” dx with n = 2, using the Trapezoidal rule.
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11. Consider the region R, in the first quadrant, bounded above by y = = and
below by y = 2.

(a)
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Find the area of R.
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Find the volume of the solid that is obtained by rotating R about
the y-axis.
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12. Solve the following system of equations using Gauss-Jordan elimination.
23;‘2 — 2.733 =-8
xr1 + a9 + Ir3 = 2

1'1+2£E2:—2

0 2 —2 -8 11 1 2 11 1 2
11 1 2 |"=f o 2o 2 —g| BBy 2 o0 _3
12 0 -2 12 0 -2 0 1 —1 —4
11 1 2 10 2 6 10 2 6
001 —1 —4] 5o 1 1 g 5o 1 1 4
01 —1 —4 01 -1 —4 00 0 0

Since the last row of the last matrix consists of only zeros we stop the
Gauss-Jordan elimination process and solve the remaining 2 equations.
Weget xo —x3=—4=>29=23—4, 11 +223=6= 21 =6 — 2x3.

If we let t = x3 then the solution to this system becomes x; = 6 — 2t,
x9 =t —4,x3 =t. Where ¢t is any real number. For example, if we let
t =0, then z; =6, 22 = —4, x3 = 0 is a solution to this system.However
there are infinitely many solutions since ¢ can be any real number.



