EMT 111/112 Solutions to Practice Test I

Laurel Benn

November 6, 2009

Please Note I'm still working on these solutions. Check 1(g) for something that we overlooked in yesterday's class.

- 1. Solve the inequality.
 - (a) $(x+1)(3x-1) \leq 0$ Solution: By inspection we see that the inequality holds for $-1 \leq x \leq \frac{1}{3} \Rightarrow$ the solution set is $[-1, \frac{1}{3}]$
 - (b) ^{4x}/_{2x+3} ≥ 0 Solution: By inspection we see that the inequality is valid if x < -³/₂ or if x ≥ 0 ⇒ The solution set is (-∞, -³/₂) ∪ [0, +∞)
 (c) ¹/_{1-x} ≤ ³/_x Solution: Subtracting the RHS from both sides of the inequality we get ¹/_{1-x} - ³/_x ≤ 0 ⇒ ^{x-3(1-x)}/_{x(1-x)} ≤ 0 ⇒ ^{4x-3}/_{x(1-x)} ≤ 0 Our 3 magic numbers are therefore 0, ³/₄ and 1. By inspection we find that the inequality is valid only for 0 < x ≤ ³/₄ and x > 1. Therefore the solution set is (0, ³/₄] ∪ (1, +∞).
 (d) x² < 4 Solution: we have x²-4 < 0 and factoring we get (x-2)(x+2) < 0. Now this inequality is valid only for -2 < x < 2. Therefore the solution set is (-2, 2).
 - (e) $x^3 > x$ Solution: We have $x^3 - x > 0 \Rightarrow x(x-1)(x+1) > 0$.

Now this inequality is valid only for -1 < x < 0 and x > 1. Therefore the solution set is $(-1, 0) \cup (1, +\infty)$.

(f) |5x - 2| < 6

Solution: This means that -6 < 5x - 2 < 6. From which we get

$$-4 < 5x < 8$$

 $-\frac{4}{5} < x < \frac{8}{5}$

Which means that the solution set is $\left(-\frac{4}{5},\frac{8}{5}\right)$.

- (g) $\frac{1}{|x+7|} > 2$ Solution: Multiply both sides of the inequality by |x+7| to get 1 > 2|x+7|. This is equivalent to $|x+7| < \frac{1}{2}$. Therefore $-\frac{1}{2} < x+7 < \frac{1}{2}$ and so $-\frac{15}{2} < x < -\frac{13}{2}$. However, from the stated problem we see that $x \neq -7$ (since division by zero is not allowed). Using interval notation , we therefore write the solution set as $(-\frac{15}{2}, -7) \cup (-7, -\frac{13}{2})$.
- 2. Solve for x: |2x + 1| = |x 2|Solution: Here we must have either 2x + 1 = x - 2 or 2x + 1 = 2 - x. Solving these two equations we get x = -3 or $x = \frac{1}{3}$. So the solution set is $\{-3, \frac{1}{3}\}$.
- 3. Find the gradient of the line through (1, 4) and (-2, 0). Solution: $m = \frac{y_2 y_1}{x_2 x_1} = \frac{0 4}{-2 1} = \frac{4}{3}$
- 4. Find the equation of the line that satisfies the given conditions.
 - (a) through (3, -1); gradient -2 Solution: Here y = -2x - (-2)(3) + (-1) = -2x + 5. So the required equation is y = -2x + 5.
 - (b) x-intercept -2; y-intercept 5 Solution: Here the gradient is $\frac{5}{2}$ and c = 5. Therefore, $y = \frac{5}{2}x + 5$ is the required equation.
 - (c) y-intercept 2; parallel to x + 2y 3 = 0Solution: Here $m = -\frac{1}{2}$ and c = 2. Therefore, $y = -\frac{1}{2}x + 2$ is the required equation.

- (d) through (1, 1); perpendicular to x + 5y + 8 = 0Solution: This means we have gradient 5,since a perpendicular line has gradient $-\frac{1}{5}$. Our desired equation is therefore y = 5x - 5(1) + 1 or y = 5x - 4.
- 5. Draw the following graphs.
 - (a) 2x y = 1
 - (b) 3x y + 5 = 0
 - (c) x = -1
- 6. Factor the expression completely.
 - (a) $6x^2 + x 12$ Solution: $6x^2 + x - 12 = 6x^2 + 9x - 8x - 12 = 3x(2x+3) - 4(2x+3)$ = (3x - 4)(2x + 3)
 - (b) $t^3 2t^2 t + 2$ Solution: $t^3 - 2t^2 - t + 2 = t^2(t - 2) - (t - 2) = (t - 2)(t^2 - 1)$ = (t - 2)(t - 1)(t + 1)

(c)
$$a^2y - b^2y$$

Solution: $a^2y - b^2y = y(a^2 - b^2) = y(a - b)(a + b)$

- 7. Solve the equation for the indicated variable.
 - (a) $F = G \frac{mM}{r^2}$; for r(b) $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$; for R_1
- 8. Simplify.
 - (a) $\left(\frac{-2x^{\frac{1}{3}}}{y^{\frac{1}{2}}z^{\frac{1}{6}}}\right)^4$ (b) $\left(\frac{3a^{-2}}{4b^{-\frac{1}{3}}}\right)^{-1}$
- 9. Find the equation of the circle that satisfies the given conditions.
 - (a) center (1, -3); radius 1 Solution: $(x - 1)^2 + (y + 3)^2 = 1$.

- (b) center (-1, 0); passes through (-2, 3)Solution: $(x + 1)^2 + y^2 = (-1 - (-2))^2 + (0 - 3)^2$ Therefore $(x + 1)^2 + y^2 = 10$ is the required equation.
- 10. Find the center and radius of the given circle.
 - (a) $x^2 + y^2 8x + 2y + 1 = 0$ Solution: Rewriting we get $(x - 4)^2 + (y + 1)^2 = -1 + 16 + 1$ or $(x - 4)^2 + (y + 1)^2 = 16$. This tells us that the center is (4, -1) and the radius is 4.
 - (b) $3x^2 + 3y^2 + 6x 18y 36 = 0$ Solution:Dividing by 3 we get $x^2 + y^2 + 2x - 6y = 12$. Completing the square we get $(x + 1)^2 + (y - 3)^2 = 12 + 1 + 9 = 22$ Hence (-1, 3) is the center and $\sqrt{22}$ is the radius of the circle.
- 11. Solve for x.
 - (a) $10^{-x} = 2$ Solution: Taking log of both sides we get $-x = \log 2$ So $x = -\log 2 = -0.301$
 - (b) $4 + 3^{5x} = 8$ Solution: Subtracting 4 from both sides we get $3^{5x} = 4$ Now taking logs of both sides we get $5x(\log 3) = \log 4$ So $x = \frac{\log 4}{5 \log 3} = 0.252$
 - (c) $e^{3-5x} = 16$
 - (d) $x^2 2^x 2^x = 0$
 - (e) $e^{2x} e^x 6 = 0$
 - (f) $\log x = -2$
 - (g) $\log(3x+5) = 2$
 - (h) $\log_3(2-x) = 3$
 - (i) $\log_2 3 + \log_2 x = \log_2 5 + \log_2 (x 2)$